The tumorigenic FGFR3-TACC3 gene fusion escapes miR-99a regulation in glioblastoma.
نویسندگان
چکیده
Fusion genes are chromosomal aberrations that are found in many cancers and can be used as prognostic markers and drug targets in clinical practice. Fusions can lead to production of oncogenic fusion proteins or to enhanced expression of oncogenes. Several recent studies have reported that some fusion genes can escape microRNA regulation via 3'-untranslated region (3'-UTR) deletion. We performed whole transcriptome sequencing to identify fusion genes in glioma and discovered FGFR3-TACC3 fusions in 4 of 48 glioblastoma samples from patients both of mixed European and of Asian descent, but not in any of 43 low-grade glioma samples tested. The fusion, caused by tandem duplication on 4p16.3, led to the loss of the 3'-UTR of FGFR3, blocking gene regulation of miR-99a and enhancing expression of the fusion gene. The fusion gene was mutually exclusive with EGFR, PDGFR, or MET amplification. Using cultured glioblastoma cells and a mouse xenograft model, we found that fusion protein expression promoted cell proliferation and tumor progression, while WT FGFR3 protein was not tumorigenic, even under forced overexpression. These results demonstrated that the FGFR3-TACC3 gene fusion is expressed in human cancer and generates an oncogenic protein that promotes tumorigenesis in glioblastoma.
منابع مشابه
Multiple functions of a glioblastoma fusion oncogene.
RNA sequencing facilitates the discovery of novel gene fusions in cancer. In this issue of the JCI, Parker et al. identify an FGFR3-TACC3 fusion oncogene in glioblastoma and demonstrate a novel mechanism of pathogenicity. A miR-99a binding site within the 3'-untranslated region (3'-UTR) of FGFR3 is lost, releasing FGFR3 signaling from miR-99a-dependent inhibition and greatly enhancing tumor pro...
متن کاملPhotofrin Based Photodynamic Therapy and miR-99a Transfection Inhibited FGFR3 and PI3K/Akt Signaling Mechanisms to Control Growth of Human Glioblastoma In Vitro and In Vivo
Glioblastoma is the most common malignant brain tumor in humans. We explored the molecular mechanisms how the efficacy of photofrin based photodynamic therapy (PDT) was enhanced by miR-99a transfection in human glioblastoma cells. Our results showed almost similar uptake of photofrin after 24 h in different glioblastoma cells, but p53 wild-type cells were more sensitive to radiation and photofr...
متن کاملDiscovery and Elucidation of the Fgfr3-tacc3 Recurrent Fusion in Glioblastoma
........................................................................................................................ vii Table of
متن کاملDetection, Characterization, and Inhibition of FGFR-TACC Fusions in IDH Wild-type Glioma.
PURPOSE Oncogenic fusions consisting of fibroblast growth factor receptor (FGFR) and TACC are present in a subgroup of glioblastoma (GBM) and other human cancers and have been proposed as new therapeutic targets. We analyzed frequency and molecular features of FGFR-TACC fusions and explored the therapeutic efficacy of inhibiting FGFR kinase in GBM and grade II and III glioma. EXPERIMENTAL DES...
متن کاملFGFR3–TACC3 cancer gene fusions cause mitotic defects by removal of endogenous TACC3 from the mitotic spindle
Fibroblast growth factor receptor 3-transforming acidic coiled-coil containing protein 3 (FGFR3-TACC3; FT3) is a gene fusion resulting from rearrangement of chromosome 4 that has been identified in many cancers including those of the urinary bladder. Altered FGFR3 signalling in FT3-positive cells is thought to contribute to cancer progression. However, potential changes in TACC3 function in the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of clinical investigation
دوره 123 2 شماره
صفحات -
تاریخ انتشار 2013